A Distributed Model for Multiple Viewpoint Melodic Prediction

Srikanth Cherla1,2, Tillman Weyde1,2, Artur Garcez2, Marcus Pearce3

1Music Informatics Research Group, City University London
2Machine Learning Group, City University London
3Centre for Digital Music, Queen Mary University of London

November 4, 2013
Outline

Introduction: Analysing sequences in symbolic music data

Background: Probabilistic modelling of melodic sequences

Approach: Modelling melodic sequences with RBMs

Results: Encouraging Prediction Performance
Introduction: Analysing sequences in symbolic music data

Background: Probabilistic modelling of melodic sequences

Approach: Modelling melodic sequences with RBMs

Results: Encouraging Prediction Performance
Sequential Information in Notated Music

- A wealth of information in notated music.
- Increasingly available
 - in different formats (MIDI, Kern, GP4, etc.).
 - for different kinds of music (classical, rock, pop, etc.)
- Analysis of sequences key to extracting information.
- Melody — Good starting point for a broader analysis.
Relevance

Scientific:
- Computational musicology
- Organizing music data
- Generating musical stimuli
- Aiding acoustic models
- Music education

Creative:
- Automatic music generation
- Compositional assistance
Introduction: Analysing sequences in symbolic music data

Background: Probabilistic modelling of melodic sequences

Approach: Modelling melodic sequences with RBMs

Results: Encouraging Prediction Performance
Information Dynamics of Music (IDyOM)

- Predictive models of musical structure using probabilistic learning (Pearce & Wiggins, 2004).
- Develop insights into the analysis of musical structure drawing on research in musicology (Whorley et al., 2013).
- Relate predictions to psychological and neural processing of music (Omigie et al., 2013).

Website: www.idyom.org
Multiple Viewpoint Systems for Music Prediction (Conklin & Witten, 1995)

- Framework for analysis of symbolic music data.
- *Viewpoint type* (feature) sequences extracted from score.
- One Markov model per *type*.
- Mixture/product-of-experts to combine multiple models.

![Musical notation](image)

<table>
<thead>
<tr>
<th>Viewpoint</th>
<th>Transformed sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>pitch</td>
<td>67 69 71 72 69 72 64 67 72 69</td>
</tr>
<tr>
<td>int</td>
<td>⊥ 2 2 1 -3 3 -8 3 5 -3</td>
</tr>
<tr>
<td>onset</td>
<td>0 2 5 6 9 10 12 15 16 20</td>
</tr>
<tr>
<td>ioi</td>
<td>⊥ 2 3 1 3 1 2 3 1 4</td>
</tr>
<tr>
<td>int ⊗ ioi</td>
<td>⊥ 2,2 2,3 1,1 -3,3 3,1 -8,2 3,3 5,1 -3,4</td>
</tr>
</tbody>
</table>

(Image Courtesy: Darrell Conklin)
Motivating a Distributed Model

At present...

1. A more scalable way to *link* viewpoint types.
2. An alternative approach to one relying directly on occurrence statistics.

In the future...

- Interest in knowledge extraction from neural networks.
Introduction: Analysing sequences in symbolic music data

Background: Probabilistic modelling of melodic sequences

Approach: Modelling melodic sequences with RBMs

Results: Encouraging Prediction Performance
Goals

- Demonstrate the use of multiple-viewpoint systems with a distributed model - Restricted Boltzmann Machine.
- Compare the predictive performance of this model with the originally used Markov models on a melody corpus.
A bipartite network with binary stochastic units.
Data in visible layer, features in hidden layer.
Can model
 - joint distribution $p(v_1, \ldots, v_r)$
 - conditional distribution $p(v_1, \ldots, v_c | v_{c+1} \ldots, v_r)$
Can be stacked into a deep network and trained efficiently.
A Distributed Melodic Prediction Model

- Viewpoint subsequence $s_{(t-n+1)}...t$ in visible layer.
- Models the conditional distribution $p(s_t|s_{(t-n+1)...(t-1)})$.
- Generalized softmax visible units.
- Viewpoint types linked by vector-concatenation.
- Trained generatively using Contrastive Divergence.
Introduction: Analysing sequences in symbolic music data

Background: Probabilistic modelling of melodic sequences

Approach: Modelling melodic sequences with RBMs

Results: Encouraging Prediction Performance
Evaluation Tasks

Predicting the next \textit{pitch} with

1. a model that uses context of type \textit{pitch}.
2. a model that uses context of type \textit{pitch} \otimes \textit{dur}.
3. a simple mixture-of-experts combination of 1 and 2.
Evaluation Setup

Corpus

- As used in Pearce et al., 2004.
- Subset of the Essen Folk Song Collection.
- A collection of 8 datasets of chorale and folk melodies.
- A total of 54,308 musical events.

Evaluated models

- Context length $\in \{1, 2, 3, 4, 5, 6, 7, 8\}$
- Hidden units $\in \{100, 200, 400\}$
- Learning rate $\in \{0.01, 0.05\}$

Evaluation criterion — cross-entropy (to be minimized)

$$H_c(p_{mod}, D_{test}) = -\sum_{s_1^n \in D_{test}} \frac{\log_2 p_{mod}(s_n | s_1^{(n-1)})}{|D_{test}|}$$
Changing Context Length

- Dataset: Folk melodies of Nova-Scotia, Alsace, Yugoslavia, Switzerland, Austria, Germany; Chorale melodies
- Input: pitch, Target: pitch

Model Performance

![Graph showing model performance with varying context lengths. The graph compares IDyOM (bounded), IDyOM (unbounded), and RBM. The y-axis represents cross-entropy, and the x-axis represents context length (0 to 10). The graph shows the performance trends over different lengths.]
Combining “Multiple Viewpoints”

Dataset: 185 chorale melodies

- Input: *pitch*, Target: *pitch*

<table>
<thead>
<tr>
<th>context length</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDyOM</td>
<td>2.737</td>
<td>2.565</td>
<td>2.505</td>
<td>2.473</td>
</tr>
<tr>
<td>RBM</td>
<td>2.698</td>
<td>2.530</td>
<td>2.490</td>
<td>2.470</td>
</tr>
</tbody>
</table>

- Input: *pitch ⊗ duration*, Target: *pitch*

<table>
<thead>
<tr>
<th>context-length</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDyOM</td>
<td>2.761</td>
<td>2.562</td>
<td>2.522</td>
<td>2.502</td>
</tr>
<tr>
<td>RBM</td>
<td>2.660</td>
<td>2.512</td>
<td>2.481</td>
<td>2.519</td>
</tr>
</tbody>
</table>

- Input: *pitch ⊕ (pitch ⊗ duration)*, Target: *pitch*

<table>
<thead>
<tr>
<th>context length</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBM (combined)</td>
<td>2.663</td>
<td>2.486</td>
<td>2.462</td>
<td>2.413</td>
</tr>
</tbody>
</table>
Conclusions & Future Work

We presented the following

- A distributed model for multiple-viewpoint melodic prediction using Restricted Boltzmann Machines.
- Improved prediction results in comparison to previously evaluated Markov models.

Some interesting directions for future work

- Deeper networks.
- Musical interpretation of hidden layers.
- A distributed Short-Term Model.
- Polyphonic music.
- Interesting MIR applications.
We would like to thank

Darrell Conklin (Universidad del Pais Vasco)
Son Tran (City University London)
Thank you!

Questions?