the beginnings of BIM

The construction industry is commonly characterised as ‘backward’ and in particular as one that fails to innovate when compared to other sectors.  The charge against construction is that from symbolic achievements such as the Crystal Palace and the Suez Canal in the 1800s, the industry failed to transform itself for the 20th Century and beyond (Winch, 2003, p. 651).  Dubois & Gadde (2002, p. 621) state that numerous studies have identified that the construction industry is inefficient, and that its short-term perspective hampers both innovation and technical development.

The industry’s performance is undeniably low when compared to other industries (Koskela & Vrijhoef, 2001, p. 198), with Winch (1998, p. 269) and Farmer (2016, p. 7) both arguing that the low rate of innovation is to blame.  Koskela & Vrijhoef argue that an inflated level of variability and “myopic modes of management” also hinder innovation.

Change is Afoot
The UK Government’s Infrastructure & Projects Authority (2016) says the sector employs around three million people (almost 10% of the working population) and contributes £90 billion to the economy – about 7% of the UK’s GDP.  It is estimated that worldwide construction output will reach £9.5 trillion (US$12 trillion) by 2025, with global BIM market revenue forecast to reach £14.32 billion (US$18.8 billion) by 2024 (Esticast, 2017).

Collaborative Working & Information Sharing
Weippert and Kajewski (2004) state that the construction industry continues to prefer traditional methods of communication and information processing, and resists efforts to modernise or embrace new ways of working.  In an interview with The Economist, Dutch architect Ben van Berkel says that while we are all using iPhones, construction is still in the Walkman phase with many construction design professionals using hand-drawn plans often “riddled with errors” (The Economist, 2017, p. 56).  There are often misconceptions around the implementation of new working methods which in turn hinder the adoption of improved processes: particularly in the construction design industry.  According to Mahmood (2016, p. 30), the adoption of BIM, information sharing and collaborative working differs across organisations and within disciplines.

while we are all using iPhones, construction is still in the Walkman phase… and hand-drawn plans are often riddled with errors

The publication of three major reports into the UK construction sector led to a consensus that clients and suppliers need to work collaboratively and share information formally and more widely.  The 2009 report, Never Waste A Good Crisis, highlighted that government-procured projects represent around 40% of the UK construction industry’s output: a significant portion of the sector’s output.  The UK Government’s Construction Strategy mandated that all publicly-funded projects must operate in “a fully collaborative 3D BIM (with all project and asset information, documentation and data being electronic) as a minimum by 2016”  (Cabinet Office, 2011, p. 14) which became known as the 2017 BIM Mandate.  The Government Construction Client Group (GCCG) was set up to “drive the adoption of BIM across government” and its initial Strategy Paper was published in March 2011 with a stated aim to utilise information sharing and BIM strategies as “part of a joined up plan to improve the performance of the government estate” (GCCG, 2011, p. 3).

Formal information sharing across construction industry projects is happening, but there’s still some way to go.

  • Cabinet Office, 2011. Government Construction Strategy, London: HMSO
  • Dubois, A. & Gadde, L. E., 2002. The construction industry as a loosely coupled system: implications for productivity and innovation. Construction Management & Economics, 20(7), pp. 621-631
  • The Economist, 2017. Least Improved. The Economist, 424(9054), pp. 55-56
  • Esticast, 2017. Building Information Modeling Market By Solution (Software, Services), Deployment Model (On-premises, Cloud) & By Application Areas (Commercial, Residential, Industrial, Infrastructure, Institutional), Industry trends, Estimation & Forecast, 2015 – 2024, Elizabeth, NJ: Esticast Research & Consulting
  • GCCG, 2011. A Report for the Government Construction Client Group: Building Information Modelling (BIM) Working Party Strategy Paper, London: HMSO
  • Infrastructure & Projects Authority, 2016. Government Construction Strategy 2016-20, London: HMSO
  • Koskela, L. & Vrijhoef, R., 2001. Is the current theory of construction a hindrance to innovation?. Building Research & Innovation, 29(3), pp. 197-207
  • Mahmoud, S., 2016. The effect BIM has on Motivation and Leadership: BIM, Design Management, Motivation & Leadership. London: Lambert Academic Publishing
  • Farmer, M., 2016. Modernise or Die: The Farmer Review Of the UK Construction Labour Model, London: Construction Leadership Council (CLC)
  • Weippert, A. & Kajewski, S. L., 2004. AEC Industry Culture: A Need for Change. Toronto, CIB World Building Congress 2004: Building for the Future
  • Wolstenholme, A., Latham, M., Egan, J. & Raynsford, N., 2009. Never Waste A Good Crisis: a review of progress since Rethinking Construction and thoughts for our future, London: Constructing Excellence
  • Winch, G. M., 1998. Zephyrs of creative destruction: understanding the management of innovation in construction. Building Research & Information, 26(5 [Innovation]), pp. 268-279
  • Winch, G. M., 2003. How innovative is construction? Comparing aggregated data on construction innovation and other sectors – a case of apples and pears. Construction Management & Economics , 21 [special issue on Innovation in the Built Environment](6), pp. 651-654

Leave a Reply

Your email address will not be published. Required fields are marked *